Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
J Am Soc Nephrol ; 35(4): 410-425, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38254266

RESUMO

SIGNIFICANCE STATEMENT: Proteinuria predicts accelerated decline in kidney function in CKD. The pathologic mechanisms are not well known, but aberrantly filtered proteins with enzymatic activity might be involved. The urokinase-type plasminogen activator (uPA)-plasminogen cascade activates complement and generates C3a and C5a in vitro / ex vivo in urine from healthy persons when exogenous, inactive, plasminogen, and complement factors are added. Amiloride inhibits uPA and attenuates complement activation in vitro and in vivo . In conditional podocin knockout (KO) mice with severe proteinuria, blocking of uPA with monoclonal antibodies significantly reduces the urine excretion of C3a and C5a and lowers tissue NLRP3-inflammasome protein without major changes in early fibrosis markers. This mechanism provides a link to proinflammatory signaling in proteinuria with possible long-term consequences for kidney function. BACKGROUND: Persistent proteinuria is associated with tubular interstitial inflammation and predicts progressive kidney injury. In proteinuria, plasminogen is aberrantly filtered and activated by urokinase-type plasminogen activator (uPA), which promotes kidney fibrosis. We hypothesized that plasmin activates filtered complement factors C3 and C5 directly in tubular fluid, generating anaphylatoxins, and that this is attenuated by amiloride, an off-target uPA inhibitor. METHODS: Purified C3, C5, plasminogen, urokinase, and urine from healthy humans were used for in vitro / ex vivo studies. Complement activation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and ELISA. Urine and plasma from patients with diabetic nephropathy treated with high-dose amiloride and from mice with proteinuria (podocin knockout [KO]) treated with amiloride or inhibitory anti-uPA antibodies were analyzed. RESULTS: The combination of uPA and plasminogen generated anaphylatoxins C3a and C5a from intact C3 and C5 and was inhibited by amiloride. Addition of exogenous plasminogen was sufficient for urine from healthy humans to activate complement. Conditional podocin KO in mice led to severe proteinuria and C3a and C5a urine excretion, which was attenuated reversibly by amiloride treatment for 4 days and reduced by >50% by inhibitory anti-uPA antibodies without altering proteinuria. NOD-, LRR- and pyrin domain-containing protein 3-inflammasome protein was reduced with no concomitant effect on fibrosis. In patients with diabetic nephropathy, amiloride reduced urinary excretion of C3dg and sC5b-9 significantly. CONCLUSIONS: In conditions with proteinuria, uPA-plasmin generates anaphylatoxins in tubular fluid and promotes downstream complement activation sensitive to amiloride. This mechanism links proteinuria to intratubular proinflammatory signaling. In perspective, amiloride could exert reno-protective effects beyond natriuresis and BP reduction. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Increased Activity of a Renal Salt Transporter (ENaC) in Diabetic Kidney Disease, NCT01918488 and Increased Activity of ENaC in Proteinuric Kidney Transplant Recipients, NCT03036748 .


Assuntos
Nefropatias Diabéticas , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Camundongos , Animais , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Plasminogênio/metabolismo , Amilorida/farmacologia , Fibrinolisina/metabolismo , Inflamassomos , Camundongos Endogâmicos NOD , Proteinúria/metabolismo , Ativação do Complemento , Anafilatoxinas , Fibrose
2.
Osteoarthritis Cartilage ; 32(5): 514-525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242312

RESUMO

OBJECTIVE: The complement cascade as major fluid phase innate immune system is activated during progression of osteoarthritis (OA). Generated anaphylatoxins and the corresponding receptors C3aR and C5aR1 are associated with the calcification of blood vessels and involved in osteogenic differentiation. This study aims on elucidating whether complement activation products contribute to cartilage calcification of OA cartilage. METHOD: Human articular chondrocytes were osteogenically differentiated in vitro in the presence or absence of C3a, C5a, and bone morphogenetic protein (BMP) 2. Furthermore, macroscopically intact (OARSI grade ≤ 1) and highly degenerated human cartilage (OARSI grade ≥ 3) was used for C3aR and C5aR1 histochemistry. Calcification of the cartilage was assessed by Alizarin Red S and von Kossa staining. RESULTS: C3a and C5a amplified matrix mineralization during in vitro osteogenesis, while inhibition of the corresponding receptors impaired calcium deposition. Moreover, C3aR and C5aR1 expression was upregulated during osteogenic differentiation and also in degenerated cartilage. Additionally, anaphylatoxin receptor expression was positively associated with calcification of native cartilage tissue and calcium deposition during osteogenic differentiation. Finally, the pro-hypertrophic growth factor BMP2 induced the expression of C5aR1. CONCLUSIONS: Our findings indicate that anaphylatoxins and their receptors play a decisive role in cartilage calcification processes during OA progression.


Assuntos
Calcinose , Osteoartrite , Humanos , Anafilatoxinas/metabolismo , Osteogênese , Cálcio/metabolismo , Cartilagem/metabolismo , Complemento C5a/metabolismo , Complemento C5a/farmacologia
3.
Trends Biochem Sci ; 49(4): 280-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233283

RESUMO

Recent advances in cryo-electron microscopy (Cryo-EM) have revolutionized our understanding of the complement C5a/C3a receptors that are crucial in inflammation. A recent report by Yadav et al. has elucidated the activation, ligand binding, selectivity, and signaling bias of these receptors, thereby enhancing structure-guided drug discovery. This paves the way for more effective anti-inflammatory therapies that target these receptors with unprecedented precision.


Assuntos
Anafilatoxinas , Complemento C5a , Anafilatoxinas/química , Anafilatoxinas/metabolismo , Complemento C5a/metabolismo , Complemento C3a/metabolismo , Microscopia Crioeletrônica , Receptores de Complemento/metabolismo
4.
Hypertension ; 81(1): 138-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909169

RESUMO

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Assuntos
Complemento C3a , Hipertensão , Animais , Humanos , Camundongos , Anafilatoxinas , Angiotensina II , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Fatores de Transcrição Forkhead , Hipertensão/genética , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
5.
Cell ; 186(22): 4956-4973.e21, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37852260

RESUMO

The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.


Assuntos
Anafilatoxinas , Receptores de Complemento , Transdução de Sinais , Anafilatoxinas/metabolismo , Complemento C3a/metabolismo , Imunidade Inata , Receptores de Complemento/metabolismo , Humanos , Animais , Camundongos
6.
Microbiol Spectr ; 11(6): e0253823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855623

RESUMO

IMPORTANCE: Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.


Assuntos
Rickettsia , Animais , Rickettsia/fisiologia , Anafilatoxinas , Macrófagos , Proteínas do Sistema Complemento , Proliferação de Células , Mamíferos
7.
Front Immunol ; 14: 1190943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409124

RESUMO

Leptospirosis is a neglected worldwide zoonosis involving farm animals and domestic pets caused by the Gram-negative spirochete Leptospira interrogans. This bacterium deploys a variety of immune evasive mechanisms, some of them targeted at the complement system of the host's innate immunity. In this work, we have solved the X-ray crystallographic structure of L. interrogans glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to 2.37-Å resolution, a glycolytic enzyme that has been shown to exhibit moonlighting functions that potentiate infectivity and immune evasion in various pathogenic organisms. Besides, we have characterized the enzyme's kinetic parameters toward the cognate substrates and have proven that the two natural products anacardic acid and curcumin are able to inhibit L. interrogans GAPDH at micromolar concentration through a noncompetitive inhibition modality. Furthermore, we have established that L. interrogans GAPDH can interact with the anaphylatoxin C5a of human innate immunity in vitro using bio-layer interferometry and a short-range cross-linking reagent that tethers free thiol groups in protein complexes. To shed light into the interaction between L. interrogans GAPDH and C5a, we have also carried out cross-link guided protein-protein docking. These results suggest that L. interrogans could be placed in the growing list of bacterial pathogens that exploit glycolytic enzymes as extracellular immune evasive factors. Analysis of the docking results indicates a low affinity interaction that is consistent with previous evidence, including known binding modes of other α-helical proteins with GAPDH. These findings allow us to propose L. interrogans GAPDH as a potential immune evasive factor targeting the complement system.


Assuntos
Leptospira interrogans , Leptospirose , Animais , Humanos , Imunidade Inata , Proteínas do Sistema Complemento , Gliceraldeído-3-Fosfato Desidrogenases , Anafilatoxinas
8.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373467

RESUMO

Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.


Assuntos
Neutrófilos , Receptor da Anafilatoxina C5a , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Células Matadoras Naturais , Anafilatoxinas
9.
Eur J Immunol ; 53(10): e2249979, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381711

RESUMO

Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.


Assuntos
Hipersensibilidade Alimentar , Imunidade Inata , Humanos , Linfócitos/metabolismo , Anafilatoxinas/metabolismo , Basófilos , Complemento C5a
10.
Nat Chem Biol ; 19(11): 1351-1360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37169960

RESUMO

The complement receptors C3aR and C5aR1, whose signaling is selectively activated by anaphylatoxins C3a and C5a, are important regulators of both innate and adaptive immune responses. Dysregulations of C3aR and C5aR1 signaling lead to multiple inflammatory disorders, including sepsis, asthma and acute respiratory distress syndrome. The mechanism underlying endogenous anaphylatoxin recognition and activation of C3aR and C5aR1 remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-bound C5aR1 as well as an apo-C3aR structure. These structures, combined with mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins to the complement receptors that is different from chemokine receptors, unique pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a common mechanism of receptor activation. These results provide crucial insights into the molecular understanding of C3aR and C5aR1 signaling and structural templates for rational drug design for treating inflammation disorders.


Assuntos
Anafilatoxinas , Receptores de Complemento , Transdução de Sinais
11.
Blood Adv ; 7(21): 6411-6427, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37257194

RESUMO

In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.


Assuntos
Anafilatoxinas , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Camundongos , Animais , Isquemia/etiologia , Receptor da Anafilatoxina C5a
12.
Int Immunopharmacol ; 118: 110081, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989901

RESUMO

The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.


Assuntos
Anafilatoxinas , Transdução de Sinais , Humanos , Ativação do Complemento , Inflamação , Complemento C5a , Receptor da Anafilatoxina C5a
13.
Biol Pharm Bull ; 46(3): 432-439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858572

RESUMO

Anaphylaxis is a serious allergic or hypersensitivity reaction with a sudden onset that can be life-threatening or fatal. Previous studies have highlighted two pathways of anaphylaxis in mice. One is the classical immunoglobulin E (IgE)-mediated pathway that involves mast cells and histamine. The other is an alternative IgG-mediated pathway that involves basophils, monocytes/macrophages, neutrophils, and the platelet-activating factor (PAF). However, little is known about the mechanism by which complement anaphylatoxins contribute to the induction of anaphylaxis. Infection is a cofactor that potentially amplifies the risk of anaphylaxis. Here, we showed that priming with a lipopolysaccharide (LPS), which mimics bacterial infection, exacerbates anaphylatoxin C5a-induced anaphylaxis in mice. LPS plus C5a-induced anaphylaxis was mediated by histamine and lipid mediators, especially PAF. Cell depletion experiments demonstrated that LPS plus C5a-induced anaphylaxis depended on monocytes/macrophages, basophils, and neutrophils. These results suggest that C5a is a potent inducer of anaphylaxis in bacterial infections. Remarkably, the molecular and cellular mediators of LPS plus C5a-induced anaphylaxis are mostly shared with IgE- and IgG-mediated anaphylaxis. Therefore, combined inhibition of histamine and PAF may be beneficial as a second-line treatment for severe anaphylaxis.


Assuntos
Anafilaxia , Animais , Camundongos , Lipopolissacarídeos , Histamina , Anafilatoxinas , Imunoglobulina E , Imunoglobulina G
14.
Front Immunol ; 13: 980733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405694

RESUMO

Polyphosphates are linear polymers of inorganic phosphates that exist in all living cells and serve pleiotropic functions. Bacteria produce long-chain polyphosphates, which can interfere with host defense to infection. In contrast, short-chain polyphosphates are released from platelet dense granules and bind to the chemokine CXCL4. Here, we report that long-chain polyphosphates induced the release of CXCL4 from mouse bone marrow-derived macrophages and peritoneal macrophages in a dose-/time-dependent fashion resulting from an induction of CXCL4 mRNA. This polyphosphate effect was lost after pre-incubation with recombinant exopolyphosphatase (PPX) Fc fusion protein, demonstrating the potency of long chains over monophosphates and ambient cations. In detail, polyphosphate chains >70 inorganic phosphate residues were required to reliably induce CXCL4. Polyphosphates acted independently of the purinergic P2Y1 receptor and the MyD88/TRIF adaptors of Toll-like receptors. On the other hand, polyphosphates augmented LPS/MyD88-induced CXCL4 release, which was explained by intracellular signaling convergence on PI3K/Akt. Polyphosphates induced Akt phosphorylation at threonine-308. Pharmacologic blockade of PI3K (wortmannin, LY294002) antagonized polyphosphate-induced CXCL4 release from macrophages. Intratracheal polyphosphate administration to C57BL/6J mice caused histologic signs of lung injury, disruption of the endothelial-epithelial barrier, influx of Ly6G+ polymorphonuclear neutrophils, depletion of CD11c+SiglecF+ alveolar macrophages, and release of CXCL4. Long-chain polyphosphates synergized with the complement anaphylatoxin, C5a, which was partly explained by upregulation of C5aR1 on myeloid cells. C5aR1-/- mice were protected from polyphosphate-induced lung injury. C5a generation occurred in the lungs and bronchoalveolar lavage fluid (BALF) of polyphosphate-treated C57BL/6J mice. In conclusion, we demonstrate that polyphosphates govern immunomodulation in macrophages and promote acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Complemento C5a , Camundongos , Animais , Complemento C5a/metabolismo , Anafilatoxinas/metabolismo , Fator Plaquetário 4/metabolismo , Polifosfatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Fatores Imunológicos , Bactérias/metabolismo
15.
Cells ; 11(20)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291163

RESUMO

The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.


Assuntos
Anafilatoxinas , Neutrófilos , Complemento C5a des-Arginina , Espécies Reativas de Oxigênio , Anafilatoxinas/análise , Anafilatoxinas/farmacologia , Proteínas do Sistema Complemento , Glucose
16.
Front Immunol ; 13: 1033794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275683

RESUMO

Mas-related G protein-coupled receptor-X2 (MRGPRX2) expressed on mast cells (MCs) contributes to hypersensitivity reactions to cationic US-Food and Drug Administration (FDA) approved drugs such as the neuromuscular blocking agent, rocuronium. In addition, activation of MRGPRX2 by the neuropeptide substance P (SP) and the pro-adrenomedullin peptide (PAMP-12) is associated with a variety of cutaneous conditions such as neurogenic inflammation, pain, atopic dermatitis, urticaria, and itch. Thus, small molecules aimed at blocking MRGPRX2 constitute potential options for modulating IgE-independent MC-mediated disorders. Two inverse MRGPRX2 agonists, named C9 and C9-6, have recently been identified, which inhibit basal G protein activation and agonist-induced calcium mobilization in transfected HEK293 cells. Substance P serves as a balanced agonist for MRGPRX2 whereby it activates both G protein-mediated degranulation and ß-arrestin-mediated receptor internalization. The purpose of this study was to determine if C9 blocks MRGPRX2's G protein and ß-arrestin-mediated signaling and to determine its specificity. We found that C9, but not its inactive analog C7, inhibited degranulation in RBL-2H3 cells stably expressing MRGPRX2 in response to SP, PAMP-12 and rocuronium with an IC50 value of ~300 nM. C9 also inhibited degranulation as measured by cell surface expression of CD63, CD107a and ß-hexosaminidase release in LAD2 cells and human skin-derived MCs in response to SP but not the anaphylatoxin, C3a or FcϵRI-aggregation. Furthermore, C9 inhibited ß-arrestin recruitment and MRGPRX2 internalization in response to SP and PAMP-12. We found that a G protein-coupling defective missense MRGPRX2 variant (V282M) displays constitutive activity for ß-arrestin recruitment, and that this response was significantly inhibited by C9. Rocuronium, SP and PAMP-12 caused degranulation in mouse peritoneal MCs and these responses were abolished in the absence of MrgprB2 or cells treated with pertussis toxin but C9 had no effect. These findings suggest that C9 could provide an important framework for developing novel therapeutic approaches for the treatment of IgE-independent MC-mediated drug hypersensitivity and cutaneous disorders.


Assuntos
Hipersensibilidade a Drogas , Neuropeptídeos , Camundongos , Animais , Humanos , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Degranulação Celular , Adrenomedulina/metabolismo , Receptores de IgE/metabolismo , Substância P/farmacologia , Cálcio/metabolismo , Rocurônio , Toxina Pertussis/farmacologia , Células HEK293 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mastócitos/metabolismo , Neuropeptídeos/metabolismo , Hipersensibilidade a Drogas/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , Anafilatoxinas/metabolismo , Imunoglobulina E/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 1016057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246887

RESUMO

In recent years, evidence has accumulated that the complement system, an integral part of innate immunity, may be involved in the regulation of bone homeostasis as well as inflammatory bone loss, for example, in rheumatoid arthritis and periodontitis. Complement may also contribute to osteoporosis development, but investigation of the mechanism is limited. Using mice with a conditional deletion of the complement anaphylatoxin receptor C5aR1, we here demonstrated that C5aR1 in osteoblasts (C5aR1 Runx2-Cre mice) or osteoclasts (C5aR1 LysM-Cre mice) did not affect physiological bone turnover or age-related bone loss in either sex, as confirmed by micro-computed tomography, histomorphometry, and biomechanical analyses of the bone and by the measurement of bone turnover markers in the blood serum. When female mice were subjected to ovariectomy (OVX), a common model for postmenopausal osteoporosis, significant bone loss was induced in C5aR1 fl/fl and C5aR1 LysM-Cre mice, as demonstrated by a significantly reduced bone volume fraction, trabecular number and thickness as well as an increased trabecular separation in the trabecular bone compartment. Confirming this, the osteoclast number and the receptor activator of nuclear factor k-B (RANK) ligand (RANKL) serum level were significantly elevated in these mouse lines. By contrast, C5aR1 Runx2-Cre mice were protected from bone loss after OVX and the serum RANKL concentration was not increased after OVX. These data suggested that bone cell-specific C5aR1 may be redundant in bone homeostasis regulation under physiological conditions. However, C5aR1 on osteoblasts was crucial for the induction of bone resorption under osteoporotic conditions by stimulating RANKL release, whereas C5aR1 on osteoclasts did not regulate OVX-induced bone loss. Therefore, our results implicate C5aR1 on osteoblasts as a potential target for treating postmenopausal osteoporosis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Animais , Feminino , Camundongos , Anafilatoxinas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligantes , Osteoblastos , Osteogênese , Osteoporose/genética , Osteoporose Pós-Menopausa/genética , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento , Microtomografia por Raio-X
18.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137652

RESUMO

BACKGROUND AND AIMS: The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS: We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS: We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS: Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Anafilatoxinas , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação para Baixo , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Inflamação/patologia , Camundongos , Microambiente Tumoral
19.
Front Immunol ; 13: 1006761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172347

RESUMO

During organ transplantation, ischemia/reperfusion injury and pre-formed anti-HLA antibodies are the main cause of delayed graft function and recovery through the activation of the complement system. By supplying oxygen during transplantation, M101 is suspected to avoid complement activation, however, a direct effect exerted by M101 on this pathway is unknown. This was tested by using functional assays (lymphocytotoxic crossmatch test, C3d Luminex-based assay, 50% complement hemolysis [CH50], and 50% alternative complement pathway [AP50/AH50]), and quantitative assays (C3, C3a, C4, C5, C5a, C6, C7, C8, C9 and sC5b-9). M101 interferes with the anti-HLA lymphocytotoxic crossmatch assay, and this effect is complement-dependent as M101 inhibits the classical complement pathway (CH50) in a dose-dependent and stable manner. Such inhibition was independent from a proteolytic effect (fractions C3 to C9) but related to a dose-dependent inhibition of the C3 convertase as demonstrated by exploring downstream the release of the anaphylatoxins (C3a and C5a), C3d, and sC5b-9. The C3 convertase inhibition in the presence of M101 was further demonstrated in the AP50/AH50 assay. In conclusion, the use of M101 avoids the activation of the complement pathway, which constitutes an additional advantage for this extracellular hemoglobin to preserve grafts from ischemia/reperfusion injury and preformed anti-HLA antibodies.


Assuntos
Preservação de Órgãos , Traumatismo por Reperfusão , Anafilatoxinas , Ativação do Complemento , Complemento C3 , Convertases de Complemento C3-C5 , Hemoglobinas , Humanos , Isquemia , Oxigênio , Traumatismo por Reperfusão/prevenção & controle
20.
Front Immunol ; 13: 958392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958588

RESUMO

The complement system (CS) is an ancient and highly conserved part of the innate immune system with important functions in immune defense. The multiple fragments bind to specific receptors on innate and adaptive immune cells, the activation of which translates the initial humoral innate immune response (IR) into cellular innate and adaptive immunity. Dysregulation of the CS has been associated with the development of several autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ANCA-associated vasculitis, and autoimmune bullous dermatoses (AIBDs), where complement drives the inflammatory response in the effector phase. The role of the CS in autoimmunity is complex. On the one hand, complement deficiencies were identified as risk factors to develop autoimmune disorders. On the other hand, activation of complement can drive autoimmune responses. The anaphylatoxins C3a and C5a are potent mediators and regulators of inflammation during the effector phase of autoimmunity through engagement of specific anaphylatoxin receptors, i.e., C3aR, C5aR1, and C5aR2 either on or in immune cells. In addition to their role in innate IRs, anaphylatoxins regulate humoral and cellular adaptive IRs including B-cell and T-cell activation, differentiation, and survival. They regulate B- and T-lymphocyte responses either directly or indirectly through the activation of anaphylatoxin receptors via dendritic cells that modulate lymphocyte function. Here, we will briefly review our current understanding of the complex roles of anaphylatoxins in the regulation of immunologic tolerance and the early events driving autoimmunity and the implications of such regulation for therapeutic approaches that target the CS.


Assuntos
Anafilatoxinas , Doenças Autoimunes , Autoimunidade , Proteínas do Sistema Complemento , Humanos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...